Use Riemann sum(midpoints as sample points) and Simpson's Rule to approximate the following integrals, respectively, and compare the approximations with exact values of integrals.

1. $\int_{0}^{2} e^{x} d x$

$$
n=4
$$

2. $\int_{1}^{2} \ln x d x$

$$
n=4
$$

3. $\int_{3}^{5} \sqrt{1+x^{2}} d x$

$$
n=4
$$

4. $\int_{0}^{\pi} \sin x d x$

$$
n=6
$$

5. $\int_{0}^{4} x^{3} d x$

$$
n=4
$$

$$
\text { 6. } \int_{0}^{2} x^{4} d x
$$

6. $\int_{0}^{2} x^{4} d x$

$$
n=4
$$

Hint: If you do not have a calculator, you can use wolfram alpha to calculate $e^{0.5}, \sin \left(\frac{\pi}{12}\right)$, ect.

